电偶极相互作用

==参考:[[电偶极算符的计算]]、[[电偶极算符的计算(简版)]]、[[电场强度等问题]]、[[碱金属原子的直积表象和耦合表象]]==

原子的运动方程

相互作用哈密顿量

碱金属原子的哈密顿量可以写为(以下均取\(\hbar = 1\)\[ H_{0} = \sum_{F, m_{F}} (\omega_{F, m_{F}} + \omega _{g})\ket{ F, m_{F}} \bra{F, m_{F}} + \sum_{ F', m_{F}'} \left(\omega_{F', m_{F}'}+ \omega_{e}\right) \ket{F, m_{F}'}\bra{F', m_{F}'} ,\tag{1} \] 上式中,将哈密顿量在基态和激发态的本征基矢\(\ket{F, m_{F}}\)\(\ket{F', m_{F}'}\)下展开,(1)式中\(\omega_{g}\)\(\omega_{e}\)分别是基态和激发态频率参考点,\(\omega_{F,m_{F}}\)\(\omega_{F', m_{F}'}\)分别是基态和激发态相对频率参考点\(\omega_{g}\)\(\omega_{e}\)的频率移动。进一步定义基态-激发态频率参考点的频率差: \[ \omega_{eg}=\omega_{e}-\omega_{g}.\tag{1a} \]

原子与激光光场的电偶极相互作用哈密顿量为 \[ H_{1}(t) = -\mathbf{d}\cdot \mathbf{E}(t),\tag{2} \] 其中,\(\mathbf{d}\)是原子的电偶极算符,\(\mathbf{E}(t)\)是激光的电场部分。具体定义,可参考算稿[[电场强度等问题]]及Happer书5.2 The Electric Dipole Moment of Atoms节【注意算稿[[电场强度等问题]]中,对比了Happer书和其他参考资料的差异】。

上式中激光的电场部分记为 \[ \begin{align} \mathbf{E}(t) =& \mathbf{E}_{0} \cos (\omega_{0} t - \mathbf{k} \cdot \mathbf{r} +\phi_{0}) = \frac{1}{2} \mathbf{E}_{0}e^{ i(\mathbf{k} \cdot \mathbf{r}-\phi_{0})} e^{-i\omega t} + \mathrm{c.c.}. \end{align}\tag{3} \] 上式中,\(\omega_{0}\)是激光的频率,\(\mathbf{k}\)光场的波矢,\(\phi_{0}\)是原点处光场的相位。设原子的速度为\(\mathbf{v}\),则\(t\)时刻的位置为\(\mathbf{r} =\mathbf{r}_{0}+\mathbf{v}t\) ,为简化符号,我们假设原子初始位置位于原点(\(\mathbf{r}_{0}=0\)),代入式得到 \[ \begin{align} \mathbf{E}(t) =& \mathbf{E}_{0} \cos ((\omega_{0} - \mathbf{k} \cdot \mathbf{v})t +\phi_{0}) = \frac{1}{2} \mathbf{E}_{0}e^{ -i\phi_{0}} e^{-i\omega t} + \mathrm{c.c.} \equiv \frac{1}{2}\tilde{\mathbf{E}}_{0} e^{-i\omega t} + \mathrm{c.c.}. \end{align}\tag{3a} \] 其中的频率\(\omega\)是包含了多普勒频移的运动原子感受到的激光频率,即 \[ \begin{align} \omega =& \omega_{0} - \mathbf{k}_{1}\cdot \mathbf{v}. \end{align}\tag{4} \] 在(3a)式中,还定义了电场的复振幅 \[ \begin{align} \tilde{\mathbf{E}}_{0} \equiv \mathbf{E}_{0} e^{ -i \phi_{0} }. \end{align}\tag{4} \] 在(2)式中,电偶极算符\(\mathbf{d}\)在碱金属原子本征态基矢下写为 \[ \mathbf{d} = \sum_{{F, F', m_{F}, m_{F}'}} \vert F, m_{F}\rangle \langle F, m_{F}\vert \mathbf{d} \vert F', m_{F}'\rangle \langle F'm_{F}'\vert + \mathrm{H.c.} \equiv \mathbf{D} + \mathbf{D}^{\dagger},\tag{5} \] 其中, \[ \mathbf{D} = \sum_{F, m_{F}, F', m_{F}'} \bra{F, m_{F}} \mathbf{d}\ket{F', m_{F}'} \ket{F, m_{F}} \bra{F', m_{F}'} \equiv \sum_{F, m_{F}, F', m_{F}'} \mathbf{d}_{F, m_{F},F', m_{F}'} \ket{F, m_{F}} \bra{F', m_{F}'}\tag{5.1} \] 表示激发态\(\ket{F', m_{F}'}\)到基态\(\ket{ F, m_{F}}\)的跃迁(\(\mathbf{d}_{F, m_{F}, F', m_{F}'}\)是跃迁矩阵元),\(\mathbf{D}^{\dagger}\)表示相反的过程。 ## 主方程 前文讨论在电偶极作用下,密度矩阵的相干演化方程。实际问题中,总是存在非相干的耗散过程(如原子自发辐射,原子间碰撞导致的自旋弛豫等)。考虑了这些非相干过程,原子的密度矩阵演化方程(主方程)可以写为: \[ \begin{align} \frac{d \rho}{dt} =& -i \left[ H_{0}+H_{1}(t), \rho \right] + \mathcal{L}_{\mathrm{incoherent}}\left[ \rho \right] . \end{align}\tag{7} \] 其中,我们在运动方程中加入了由超算符\(\mathcal{L}_{\mathrm{incoherent}}\)表示的非相干项(下文讨论)。 # 旋转波近似

旋转变换

为了做旋转波近似,定义如下相位算符 \[ \begin{align} \Phi =& (\omega + \omega_{g}) t\sum_{F', m_{F}'}\ket{F', m_{F}'} \bra{F', m_{F}'} + \omega_{g}t \sum_{F, m_{F}} \ket{F, m_{F}} \bra{F, m_{F}}\\ =& (\omega + \omega_{g}) t\mathcal{P}_{e} + \omega_{g }t \mathcal{P}_{g} , \end{align}\tag{8} \] 其中投影算符\(\mathcal{P}_{e}\)\(\mathcal{P}_{g}\)分别定义为 \[ \begin{align} \mathcal{P}_{e} =& \sum_{F', m_{F}'} \ket{F', m_{F}'} \bra{F, m_{F}'} , \\ \mathcal{P}_{g} =& \sum_{F, m_{F}} \ket{F, m_{F}} \bra{ F, m_{F}}. \\ \end{align}\tag{8a} \] 在旋转变换下的密度矩阵 \[ \tilde{\rho} = e^{i\Phi} \rho e^{-i \Phi}.\tag{9} \]\(\tilde{\rho}\)求导得到 \[ \begin{align} \frac{d \tilde{\rho}}{dt} =& i\dot{\Phi} \tilde{\rho} +e^{i\Phi} \dot{\rho} e^{-i\Phi} -i \tilde{\rho}\dot{\Phi} \\ =& i \left[ \dot{\Phi}, \tilde{\rho} \right] -i e^{i\Phi} \left[ H_{0} + H_{1}(t), \rho \right] e^{-i\Phi} \\ =& -i \left[ \tilde{H}_{0}- \dot{\Phi}+\tilde{H}_{1}(t) , \tilde{\rho} \right] \equiv -i \left[ K_{0} + K_{1}(t), \tilde{\rho}\right] , \end{align}\tag{10} \] 其中\(K_{0}\)是旋转表象下的自由哈密顿量 \[ \begin{align} & K_{0} = \tilde{H}_{0} - \dot{\Phi} \\ \\ =& \sum_{F, m_{F}} \omega_{F, m_{F}} \ket{ F, m_{F}} \bra{F, m_{F}} + \sum_{ F', m_{F}'} \left(\omega_{F', m_{F}'}+ \omega_{eg} - \omega\right) \ket{F, m_{F}'}\bra{F', m_{F}'} \\ \\ =&\sum_{F, m_{F}} \omega_{F, m_{F}} \ket{ F, m_{F}} \bra{F, m_{F}} + \sum_{ F', m_{F}'} \left(\omega_{F', m_{F}'} - \Delta\right) \ket{F, m_{F}'}\bra{F', m_{F}'} \\ \\ \equiv& K_{g} + K_{e}. \end{align}\tag{11} \] 上式中,\(K_{g}\)\(K_{e}\)以分别表示基态和激发态在旋转表象下的哈密顿量,其矩阵形式为 \[ \begin{align} K_{e} =& \mathrm{diag}\left( \omega_{F', m_{F}'} -\Delta\right), \\ K_{g} =& \mathrm{diag}\left( \omega_{F, m_{F}} \right) , \end{align}\tag{11.1} \] 其中,\(\Delta\equiv \omega - \omega_{eg}\)是激光相对于原子的频率失谐。

旋转表象下,电偶极相互作用为 \[ \begin{align} K_{1}(t) =& \tilde{H}_{1}(t) = e^{i\Phi} H_{1}(t) e^{-i \Phi}=- \tilde{\mathbf{d}} \cdot \mathbf{E}_{1}(t) , \end{align}\tag{13} \] 其中,旋转表象下的电偶极算符为 \[ \begin{align} \tilde{\mathbf{d}} =& e^{i\Phi}\mathbf{d}e^{-i\Phi} = \tilde{\mathbf{D}} + \tilde{\mathbf{D}}^{\dagger}.\\ \end{align}\tag{14} \] 上式中,负频和正频电偶极算符分别为 \[ \begin{align} \tilde{\mathbf{D}} = & e^{i\Phi}\mathbf{D}e^{-i\Phi} = e^{-i \omega t} \mathbf{D} , \\ \\ \tilde{\mathbf{D}}^{\dagger} = & e^{i\Phi}\mathbf{D}^{\dagger}e^{-i\Phi} = \mathbf{D}^{\dagger} e^{i \omega t} . \end{align}\tag{15} \]

旋转波近似

由上述变换得到, \[ \begin{align} K_{1}(t) =& -\left( e^{i \omega_{1} t} \mathbf{D}^{\dagger} + \mathrm{h.c.}\right) \cdot\left( \frac{1}{2}\tilde{\mathbf{E}}_{0} e^{-i\omega t} + \mathrm{c.c.} \right) \\ \\ K_{1,\mathrm{RWA}}(t)\approx & - \frac{1}{2}\left( \mathbf{D}^{\dagger}\cdot \tilde{\mathbf{E}}_{0} + \mathrm{h.c.}\right) \equiv \tilde{V}(t) + \tilde{V}^{\dagger}(t) . \end{align}\tag{16} \] 考虑到\(\omega \sim 2\pi \times10^{14}~\mathrm{Hz}\)在光频段,上式第二行\(K_{1, \mathrm{RWA}}(t)\)中忽略了频率为\(\pm 2\omega\)的光频高频项。(16)式中, \[ \begin{align} \tilde{V}(t) = & - \frac{1}{2} \mathbf{D}^{\dagger}\cdot \tilde{\mathbf{E}}_{0} , \\ \\ \tilde{V}^{\dagger}(t) = & - \frac{1}{2} \mathbf{D}\cdot \tilde{\mathbf{E}}_{0}^{*} . \end{align}\tag{18} \] 由以上定义,(10)式在光频旋转波近似下可以表示为 \[ \begin{align} \frac{d \tilde{\rho}}{dt} =& -i \left[ K_{0}+K_{1,\mathrm{RWA}}(t), \tilde{\rho} \right] = -i \left( \\ \begin{array}{c|c} K_{e}& \tilde{V}(t) \\ \hline \tilde{V}^{\dagger}(t) & K_{g} \end{array} \right)\left( \begin{array}{c|c} \tilde{\rho}_{ee} & \tilde{\rho}_{eg} \\ \hline \tilde{\rho}_{ge} & \tilde{\rho}_{gg} \end{array} \right) +i\left( \begin{array}{c|c} \tilde{\rho}_{ee} & \tilde{\rho}_{eg} \\ \hline \tilde{\rho}_{ge} & \tilde{\rho}_{gg} \end{array} \right) \left( \\ \begin{array}{c|c} K_{e}& \tilde{V}(t) \\ \hline \tilde{V}^{\dagger}(t) & K_{g} \end{array} \right) \\ \\ =& -i \left( \begin{array} {c|c} K_{e} \tilde{\rho}_{ee} - \tilde{\rho}_{e e} K_{e}+ \tilde{V}(t)\tilde{\rho}_{ge} -\tilde{\rho}_{eg} \tilde{V}^{\dagger}(t) & K_{e}\tilde{\rho}_{eg}+\tilde{V}(t)\tilde{\rho}_{gg} -\tilde{\rho}_{ee} \tilde{V}(t) -\tilde{\rho}_{eg}K_{g}\\ \hline \tilde{V}^{\dagger}(t)\tilde{\rho}_{e e} + K_{g} \tilde{\rho}_{ge} - \tilde{\rho}_{ge}K_{e} - \tilde{\rho}_{gg}\tilde{V}^{\dagger}(t) & \tilde{V}^{\dagger}(t)\tilde{\rho}_{eg}-\tilde{\rho}_{ge}\tilde{V}(t) + K_{g}\tilde{\rho}_{gg}-\tilde{\rho}_{gg}K_{g} \end{array} \right) , \end{align}\tag{19} \] ## Liouville空间描述 将密度矩阵\(\tilde{\rho}\)分块后,分别写出其运动方程 \[ \begin{align} \dfrac{d}{dt}\tilde{\rho}_{ee} =& -i\left[ K_{e} \tilde{\rho}_{ee} - \tilde{\rho}_{e e} K_{e}+ \tilde{V}(t)\tilde{\rho}_{ge} -\tilde{\rho}_{eg} \tilde{V}^{\dagger}(t) \right] \\ \dfrac{d}{dt}\tilde{\rho}_{ge} =& -i\left[ \tilde{V}^{\dagger}(t)\tilde{\rho}_{e e} + K_{g} \tilde{\rho}_{ge} - \tilde{\rho}_{ge}K_{e} - \tilde{\rho}_{gg}\tilde{V}^{\dagger}(t)\right] \\ \dfrac{d}{dt}\tilde{\rho}_{eg} =& -i\left[ K_{e}\tilde{\rho}_{eg}+\tilde{V}(t)\tilde{\rho}_{gg} -\tilde{\rho}_{ee} \tilde{V}(t) -\tilde{\rho}_{eg}K_{g} \right] \\ \dfrac{d}{dt}\tilde{\rho}_{gg} =& -i\left[ \tilde{V}^{\dagger}(t)\tilde{\rho}_{eg}-\tilde{\rho}_{ge}\tilde{V}(t) + K_{g}\tilde{\rho}_{gg}-\tilde{\rho}_{gg}K_{g}\right] \end{align} \tag{20} \] 注意,上式中的\(\tilde{\rho}_{e e}\), \(\tilde{\rho}_{g e}\),\(\tilde{\rho}_{e g}\)\(\tilde{\rho}_{gg}\)均为矩阵,等号左边为矩阵的时间导数(随时间的变化),等号右边由一些矩阵(\(K_{e}\), \(K_{g}\), \(\tilde{V}(t)\)\(\tilde{V}^{\dagger}(t)\)等)左乘或右乘\(\tilde{\rho}_{e e}\), \(\tilde{\rho}_{g e}\),\(\tilde{\rho}_{e g}\)\(\tilde{\rho}_{gg}\)得到。为了更方便地对运动方程进行数学处理,我们引入 [[Liouville空间和超算符]]的概念。

在Liouville空间中,运动方程表达为 \[ \begin{align} \frac{d}{dt}\left( \begin{array} {c} \vert{\rho}_{ee}) \\ \hline \vert{\rho}_{ge}) \\ \vert{\rho}_{eg}) \\ \hline \vert{\rho}_{gg}) \end{array} \right) =& -i \left( \begin{array}{c|cc|c} \mathcal{E}^{\{ee\}} & \tilde{V}(t)^{\flat} & -\tilde{V}^{\dagger}(t)^{\sharp} & 0 \\ \hline \tilde{V}^{\dagger}(t)^{\flat} & \mathcal{E}^{\{ge\}} & 0 & -\tilde{V}^{\dagger}(t)^{\sharp} \\ -\tilde{V}(t)^{\sharp} & 0 & \mathcal{E}^{\{eg\}} & \tilde{V}(t)^{\flat} \\ \hline 0 & -\tilde{V}(t)^{\sharp} & \tilde{V}^{\dagger}(t)^{\flat} & \mathcal{E}^{\{gg\}} \end{array} \right) \left( \begin{array}{c} \vert{\rho}_{ee}) \\ \hline \vert{\rho}_{ge}) \\ \vert{\rho}_{eg}) \\ \hline \vert{\rho}_{gg}) \end{array} \right). \end{align} \tag{20} \] 上式中,已经定义如下的Liouville空间中的列向量 \[ \begin{align} \vert\rho_{e e}) =& \mathrm{vec}(\tilde{\rho}_{e e}), \\ \vert\rho_{g e}) =& \mathrm{vec}(\tilde{\rho}_{g e}), \\ \vert\rho_{e g}) =& \mathrm{vec}(\tilde{\rho}_{e g}), \\ \vert\rho_{g g}) =& \mathrm{vec}(\tilde{\rho}_{g g}), \end{align} \]以及超算符 \[ \begin{align} \mathcal{E}^{\{ee\}} \equiv K_{e}^{\flat}- K_{e}^{\sharp}, \\ \\ \mathcal{E}^{\{ge\}} \equiv K_{g}^{\flat}- K_{e}^{\sharp}, \\ \\ \mathcal{E}^{\{eg\}} \equiv K_{e}^{\flat}- K_{g}^{\sharp}, \\ \\ \mathcal{E}^{\{gg\}} \equiv K_{g}^{\flat}- K_{g}^{\sharp}. \end{align}\tag{21} \] 矩阵操作\(\flat\)\(\sharp\) 的具体形式参照Happer书中Code 5.7

为了方便后续讨论,我们将运动方程(20)中的超算符分为两部分,\(\mathcal{L}_{{\mathcal{E}}}\)\(\mathcal{L}_{V}\),分别定义为 \[ \begin{align} \mathcal{L}_{\mathcal{E}} =& i \left( \begin{array}{c|cc|c} \mathcal{E}^{\{ee\}} & 0 & 0 & 0 \\ \hline 0& \mathcal{E}^{\{ge\}} & 0 & 0\\ 0 & 0 & \mathcal{E}^{\{eg\}} &0\\ \hline 0 & 0 & 0 & \mathcal{E}^{\{gg\}} \end{array} \right), \\ \\ \mathcal{L}_{V} =& i \left( \begin{array}{c|cc|c} 0& \tilde{V}(t)^{\flat} & -\tilde{V}^{\dagger}(t)^{\sharp} & 0 \\ \hline \tilde{V}^{\dagger}(t)^{\flat} & 0& 0 & -\tilde{V}^{\dagger}(t)^{\sharp} \\ -\tilde{V}(t)^{\sharp} & 0 & 0& \tilde{V}(t)^{\flat} \\ \hline 0 & -\tilde{V}(t)^{\sharp} & \tilde{V}^{\dagger}(t)^{\flat} & 0 \end{array} \right) . \end{align} \] 对角项\(\mathcal{L}_{{\mathcal{E}}}\)主要有原子的频率决定,非对角项\(\mathcal{L}_{V}\)主要由原子和光场相互作用决定。

原子的光学吸收

如前文所述,一束激光照射在原子上,激光的电场分量与原子发生电偶极相互作用(如(2)式)。交变的电场将诱导出原子的电偶极矩。电偶极矩与电场同频振荡。当激光频率与原子本征频率(近)共振时,电场对原子电偶极矩做正功【参考[[振动、共振和磁共振]]】,能量从电场向原子转化,即原子吸收了光场能量。 原子不可能永远吸收光场能量(否则原子能量将随时间一直增长)。被吸收的能量将通过某种形式耗散掉,当吸收光场能量的速率与能量耗散速率相等时,原子的能量不再增长。主要的耗散过程包括,原子的自发辐射过程(原子与真空光场相互作用导致的耗散,可参考[[原子光学跃迁基础知识|经典物理中能量的电偶极能量辐射]])以及原子间碰撞导致的各种弛豫过程。 ## 非相干项 ### 原子的自发辐射 自发辐射导致的原子密度矩阵变化为 \[ \left.\dfrac{d \tilde{\rho}}{dt}\right\vert_{\mathrm{sp}}= -\frac{1}{4\pi \epsilon_{0}} \frac{4\omega_{eg}^3}{3\hbar c^3} \left[ \mathbf{D}\cdot \tilde{\rho} \mathbf{D}^{\dagger} -\frac{1}{2}( \mathbf{D}^{\dagger}\cdot \mathbf{D} \tilde{\rho} + \tilde{\rho} \mathbf{D}^{\dagger}\cdot \mathbf{D}) \right] \tilde{\rho}, \] 或在Liouville空间中表达为 \[ \frac{d\vert\rho)}{dt}\equiv - \mathcal{L}_{\mathrm{sp}} \vert \rho ), \] 其中\(\mathcal{L}_{\mathrm{sp}}\)是自发辐射超算符。

考虑到\(\mathbf{D} = \mathcal{P}_{g}\mathbf{D}\mathcal{P}_{e}\)只包含激发态到基态的非对角块,以及\(\mathbf{D}^{\dagger} = \mathcal{P}_{e}\mathbf{D}^{\dagger}\mathcal{P}_{g}\)只包含基态到激发态的非对角块,同时考虑到基本事实 \[ \mathbf{D}^{\dagger}\cdot \mathbf{D} = \frac{2J+1}{2J'+1} \vert \langle J \vert\vert D \vert\vert J'\rangle\vert^{2} \mathcal{P}_{e} \] 可知 - 第1项中 \(\mathbf{D}\cdot \rho \mathbf{D}^{\dagger} = \mathcal{P}_{g} \mathbf{D}\cdot \rho_{e e} \mathbf{D}^{\dagger}\mathcal{P}_{g}\)表示自发辐射过程中,激发态密度矩阵\(\rho_{e e}\)对基态密度矩阵\(\rho_{gg}\)的影响; - 第2项和第三项可以写为 \[ \begin{align} -\frac{1}{2}\left( \mathbf{D}^{\dagger} \cdot \mathbf{D} \rho + \rho \mathbf{D}^{\dagger}\cdot \mathbf{D} \right) =& - \frac{\Gamma_{\mathrm{sp}}}{2}\left( \mathcal{P}_{e} \rho + \rho \mathcal{P}_{e}\right) \\ \\ =& -\Gamma_{\mathrm{sp}} \mathcal{P}_{e}\rho\mathcal{P}_{e}- \frac{\Gamma_{\mathrm{sp}}}{2}\left( \mathcal{P}_{e} \rho\mathcal{P}_{g} + \mathcal{P}_{g}\rho \mathcal{P}_{e}\right) \end{align} \] 分别表示\(\rho_{e e}\), \(\rho_{g e}\)\(\rho_{e g}\)的衰减。

因此自发辐射超算符的

\[ \mathcal{L}_{\mathrm{sp}} = \Gamma_{\mathrm{sp}} \left( \begin{array}{c|cc|c} % \mathbb{I}_{{e e}} & 0 & 0 & 0 \\ \hline 0 & \dfrac{1}{2}\mathbb{I}_{{g e}} & 0 & 0 \\ 0 & 0 & \dfrac{1}{2} \mathbb{I}_{{e g}}& 0 \\ \hline - \mathbb{A}_{\mathrm{sp}} & 0 & 0 & 0 \end{array}\right), \] 其中,\(\mathbb{I}_{e e}\)\(\mathbb{I}_{g e}\)\(\mathbb{I}_{e g}\)分别是对应子空间中的单位矩阵, \[ \Gamma_{\mathrm{sp}}=\tau^{-1}=\frac{1}{4\pi\epsilon_{0}} \frac{4\omega_{eg}^3}{3\hbar c^3} \frac{2J+1}{2J'+1} \left\vert\langle J\vert\vert D \vert \vert J' \rangle\right\vert^2 \] 是自发辐射速率(\(\tau\)是自发辐射寿命)【参考[[电场强度等问题]]】,超算符\(\mathbb{A}_{\mathrm{sp}}\)的定义为 \[ \Gamma_{\mathrm{sp}}\mathbb{A}_{\mathrm{sp}} = \frac{4\omega_{eg}^3}{3\hbar c^3} \mathbf{D}^{\flat}\cdot \left( \mathbf{D}^{\dagger} \right)^{\sharp} . \] ### 原子间的碰撞 原子间的碰撞导致密度矩阵的演化记为 \[ \left.\frac{d\rho}{dt}\right\vert_{\mathrm{collision}} = \mathcal{L}_{\mathrm{collision}} \rho \] 其中,\(\mathcal{L}_{\mathrm{collision}}\)是描述碰撞效果的超算符。针对碰撞不同的微观相互作用,以下分为两种情况讨论。 #### 光学跃迁的弛豫 \[ \mathcal{L}_{\mathrm{collision}}^{\mathrm{optical}} = \Gamma_{\mathrm{c}}^{(\mathrm{opt})} \left( \begin{array}{c|cc|c} % \mathbb{I}_{{e e}} & 0 & 0 & 0 \\ \hline 0 & \dfrac{1}{2}\mathbb{I}_{{g e}} & 0 & 0 \\ 0 & 0 & \dfrac{1}{2} \mathbb{I}_{{e g}}& 0 \\ \hline - \mathbb{A}_{\mathrm{c}} & 0 & 0 & 0 \end{array}\right), \] #### 自旋能级的弛豫 \[ \mathcal{L}_{\mathrm{collision}}^{\mathrm{spin}} = \Gamma_{\mathrm{c}}^{(\mathrm{spin})} \left( \begin{array}{c|cc|c} % \mathbb{A}^{\{e e\}}_{\mathrm{c}} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0& 0 \\ \hline 0 & 0 & 0 & \mathbb{A}^{\{g g\}}_{\mathrm{c}} \end{array}\right), \]

光学吸收截面

综上,考虑了原子能级、电偶极相互作用以及自发辐射和原子建碰撞等多种物理过程后,原子的密度矩阵演化方程为 \[ \frac{d \vert\rho) }{dt} = -\left(\mathcal{L}_{\mathcal{E}} + \mathcal{L}_{V} + \mathcal{L}_{\mathrm{sp}} + \mathcal{L}_{\mathrm{collision}}^{\mathrm{optical}} + \mathcal{L}_{\mathrm{collision}}^{\mathrm{spin}}\right) \vert\rho )\equiv -\mathcal{L}_{\mathrm{tot}} \vert \rho), \] 其中\(\mathcal{L}_{\mathrm{tot}}\)是一个Liouville空间中的超算符,在给定的基矢下,表达为一个矩阵。 时间\(t\to +\infty\)时,方程的稳态解记为\(\vert \rho)_{\mathrm{ss}}\),可以由超算符\(\mathcal{L}_{\mathrm{tot}}\)的零空间得到,即 \[ \vert \rho)_{\mathrm{ss}} = \mathrm{null}\left[ \mathcal{L}_{\mathrm{tot}} \right] , \] 其中’null’是matlab中计算矩阵零空间的命令。【实际情况下,对于恰当的超算符\(\mathcal{L}_{\mathrm{tot}}\),通常只有唯一的稳态(零空间维度是1)】。 Liouville空间中的稳态解\(\vert \rho)_{\mathrm{ss}}\)对应的密度矩阵记为\(\tilde{\rho}_{\mathrm{ss}}\)(旋转表象),并可以写成分块矩阵形式 \[ \tilde{\rho}_{\mathrm{ss}} = \left( \begin{array}[cc] % \tilde{\rho}_{\mathrm{ss}}^{\{e e\}} & \tilde{\rho}_{\mathrm{ss}}^{\{e g\}} \\ \tilde{\rho}_{\mathrm{ss}}^{\{g e\}} & \tilde{\rho}_{\mathrm{ss}}^{\{g g\}} \end{array} \right) \] 计算电偶极的平均值 \[ \begin{align} \left\langle \mathbf{d}\right\rangle(t) =& \left\langle \mathbf{D}\right\rangle(t) +\left\langle \mathbf{D}^{\dagger}\right\rangle(t) \end{align} \] 其中 \[ \begin{align} \left\langle \mathbf{D}\right\rangle(t) =& \mathrm{Tr}\left[ \mathbf{D} \rho_{\mathrm{ss}}(t) \right] \\ \\ =&\mathrm{Tr}\left[ \mathbf{D}\cdot e^{-i\Phi} \tilde{\rho}_{\mathrm{ss}} e^{i \Phi}\right] \\ \\ =&\mathrm{Tr}\left[ e^{i \Phi}\mathbf{D}\cdot e^{-i\Phi} \tilde{\rho}_{\mathrm{ss}} \right] \\ \\ =& e^{ -i\omega t } \mathrm{Tr}\left[ \mathbf{D} \tilde{\rho}_{\mathrm{ss}} \right] \\ \\ \equiv& e^{ -i\omega t } \langle \tilde{\mathbf{D}} \rangle . \end{align} \] 类似地有 \[ \left\langle \mathbf{D}^{\dagger} \right\rangle(t) = \left\langle \mathbf{D}\right\rangle^{*}(t) = e^{ i\omega t } \langle \tilde{\mathbf{D}} \rangle^{*}. \] 电场对原子做功的功率为 \[ \begin{align} P(t) = & \mathbf{E}(t) \cdot \langle\dot{\mathbf{d}} \rangle (t) \\ \\ =& \left( \frac{1}{2}\tilde{\mathbf{E}}_{0} e^{-i\omega t} + \mathrm{c.c.} \right) \cdot \Big( -i\omega e^{ -i\omega t }\langle \tilde{\mathbf{D}} \rangle +\mathrm{ c.c.} \Big) \\ \\ = & \frac{i\omega\tilde{\mathbf{E}}_{0}\cdot \langle \tilde{\mathbf{D}} \rangle^{*} -i\omega \tilde{\mathbf{E}}_{0}^{*} \cdot \langle \tilde{\mathbf{D}} \rangle}{2} + \dots \\ \\ =& \mathrm{Im}\left[ \omega \tilde{\mathbf{E}}_{0}^{*} \cdot \langle \tilde{\mathbf{D}} \rangle \right] \end{align} \]